Entradas

El fósforo es un elemento químico esencial e insustituible para todos los seres vivos. En la agricultura actual es de vital importancia para mantener el alto rendimiento de los sistemas agrícolas. Las plantas deben absorberlo del suelo, donde se encuentra en muy baja concentración en forma soluble, normalmente en niveles que varían entre 5 y 30 mg kg-1. Estos índices bajos del nutriente se deben a que el fósforo soluble reacciona con iones como el calcio, el hierro o el aluminio que provocan su precipitación o fijación, disminuyendo su disponibilidad para los vegetales (Rodríguez et al., 1999). Los fosfatos inorgánicos aplicados como fertilizantes químicos, también son inmovilizados en el suelo y como consecuencia no son solubles para ser aprovechados por los cultivos.  
La fertilización basada en microorganismos beneficiosos, biofertilizantes y bioestimulantes  son  una alternativa prometedora para solucionar este problema. Esta tecnología se basa en preparados de microorganismos específicos que mejoran la salud del suelo, y por lo tanto, el desarrollo de las plantas de múltiples formas: facilitando el acceso a nutrientes, fijando el nitrógeno atmosférico, mejorando la absorción de agua o actuando como agentes de control biológico. Además, cumplen con las carencias de los abonos convencionales: son biodegradables, renovables, no son tóxicos para la flora y fauna auxiliar y no generan residuos.
 

 
Los inoculantes microbianos pueden mejorar la eficiencia de las plantas para captar fósforo y nitrógeno. Y en consecuencia, reducir los costes de fertilización e incrementar su rendimiento. Los microorganismos realizan los procesos de solubilización, mineralización e inmovilización. El principal mecanismo microbiológico por el cual, los compuestos fosfatados son movilizados es la disminución del pH del medio por la liberación de ácidos orgánicos (Alexander, 1980). Esta propiedad es característica de bacterias gram negativas, entre ellas Pseudomonas (Fernández et al., 2005).  
En la naturaleza, los microorganismos co-existen en comunidades complejas, que se conocen como el microbioma de la rizosfera. El co-cultivo, también llamado cultivo mixto de diferentes cepas, ha demostrado ser efectivo en el incremento de la  producción de metabolitos secundarios (Ochi, 2017).  En ensayos in-vitro,  se observa que la producción del halo de solubilización (amarillo) a partir de las 72 horas es superior en las placas en co-cultivo en cruz frente al crecimiento individual de cada una de las cepas
 

 
Ensayo de solubilización de fosfatos con las bacterias pertenecientes a Bacnifos a lo largo del tiempo.
 

 
La solubilización de fósforo orgánico es un proceso dirigido por enzimas, entre ellas tenemos las fosfatasas, que participan en la desfosforilación de los grupos fosfodiéster unidos a la materia orgánica y las fitasas, que catalizan el proceso de hidrólisis del ácido fítico liberando de  forma secuencial hasta seis grupos ortofosfatos libres. La actividad enzimática es usada frecuentemente como un indicador de la actividad microbiana del suelo (Fernández. et al., 2015).
La selección de microorganismos con alta capacidad de solubilizar fósforo y su ensayo en condiciones de campo, son un paso fundamental para obtener un producto altamente eficaz.  En ensayos de campo en el cultivo de la cebolla con un 30% de reducción de la fertilización de fósfosfata, se consigue aumentos de la productividad del cultivo del 7,6% y del 22,9% con fertilización completa, respecto al control con fertilización total. A nivel de beneficios para el agricultor, teniendo en cuenta la productividad media de cebollas obtenida y el precio medio por kg de cebolla, supondría unos 300є/ha (con reducción de fertilizante fosfatado ) y de 900 є/ha con  fertilización total.
 

Fuentes

  • Rodríguez, H & R Fraga. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17:319-339
  • Fernández, L. A., Zalba, P., Gómez, M. A., & Sagardoy, M. A. (2005). Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera. Ciencia del suelo, 23(1), 31-37.
  • Alexander M. (1980). “Introducción a la Microbiología del Suelo”. AGT Editores, México pp. 234-362.
  • Ochi, K. (2017). Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. The Journal of antibiotics, 70(1), 25-40.

El sector agrícola está comenzando a darse cuenta de la importancia del microbioma asociado a las plantas. El estudio de la interacción microorganismo-planta a través de las ‘ómicas’ ofrece nuevas herramientas para mejorar la gestión agrícola en términos de promoción del crecimiento de las plantas, disponibilidad y eficiencia de uso de nutrientes, bioprotección frente al estrés abiótico y biótico.
TRICHODEX®️, consciente de este nuevo enfoque y como empresa experta en biotecnología aplicada a la agricultura, desarrolla nuevas tecnologías para la restauración del microbioma vegetal y paliar así los efectos de los diferentes tipos de estrés abiótico, así como la eficiencia nutricional de los cultivos. En ensayos realizados en pimiento y tomate bajo el efecto de diferentes tipos de estrés, se ha demostrado la capacidad de los productos TRICHOBACTER® y BACNIFOS®, biofertilizantes formulados en consorcios microbianos, en mitigar los efectos del estrés abiótico, aumentado la floración entre un 25-64% con diferencias estadísticas con el control bajo el mismo tipo de estrés. El empleo de TRICHOBACTER® y BACNIFOS® en cultivos con un 30% menos de fertilización nitrogenada y fosfatada, respectivamente, consigue incrementos significativos en los rendimientos de los cultivos de cebolla y patata superiores al control con una fertilización completa.
 

 
La escasez mundial de recursos hídricos, junto con la salinización del suelo, son factores abióticos que limitan el desarrollo de los cultivos. Se estima que el 50% de las tierras cultivables estarán afectadas por estos tipos de estrés en el 2050 (Miloševic y col., 2012; FAO ,2002). La degradación de las tierras y el abuso de sustancias químicas comportan una mengua de la producción agrícola, en un momento en que se necesita producir más del 70% de alimentos a una creciente población mundial que en el 2050 alcanzará 9,5 billones. El sector agrícola está comenzando a darse cuenta de la importancia del microbioma de la rizosfera para los cultivos. La rizosfera contiene más de 1011 células microbianas por gramo de raíz y más de 30.000 especies distintas de microorganismos (rizobacterias promotoras del crecimiento vegetal PGPRs, agentes de bioprotección ACBs, saprófitos, etc.). El microbioma representa un nuevo paradigma para la agricultura, juega un papel muy importante en el desarrollo de las plantas y cuenta con diversas estrategias que ayudan a las plantas a enfrentarse a diferentes tipos de estrés biótico y abiótico. La reducción en los costes de la secuenciación genómica y sus herramientas desde 2008, debido al gran avance tecnológico en la bioinformática, está impactando de forma vertiginosa en los avances científicos y tecnológicos relacionados con el microbioma.
Los estudios genómicos modernos que involucran ‘ómicas’ y sus estudios comparativos resultan muy útiles para desentrañar los diferentes aspectos de la interacción microorganismos-planta. Se podría explorar un conocimiento mucho más profundo del mecanismo de dicha interacción microorganismo-planta-microorganismo para mejorar la gestión agrícola en términos de promoción del crecimiento de las plantas, eficiencia de uso de nutrientes y su disponibilidad, bioprotección frente a patógenos, así como al estrés abiótico y biótico.
TRICHODEX®️, empresa líder en biotecnología aplicada a la agricultura, aporta soluciones que tienen como objetivo mantener y restaurar el microbioma vegetal y, por consiguiente, la mejora de los cultivos. En este interesante contexto biotecnológico se encuadra el presente estudio, cuyo objetivo es la mejora de la tolerancia de las plantas de tomate y pimiento a diferentes condiciones de estrés abiótico, gracias a la aplicación de productos a base de consorcios óptimos de PGPRs como son TRICHOBACTER® y BACNIFOS®.
 

 
Para ello, se indujeron condiciones de estrés abiótico al cultivo, realizándose ensayos con tres tipos de estrés: salino, hídrico y cambios en las condiciones ambientales y su influencia en la floración de las plantas y, por lo tanto, en la producción.TRICHODEX®️ ha demostrado que la aplicación de PGPRs en plantas sometidas a estrés severos ayuda a mitigar los daños ocasionados por este, con efectos notorios en la floración. Las PGPRs proporcionan diferentes mecanismos de acción para la protección de las plantas vía producción de fitohormonas, principalmente el ácido índole acético (AIA), control de la producción de etileno por la acción de la enzima ACC desaminasa, protección contra las especies reactivas de oxígeno (ROS) y solubilización de nutrientes (fosfatos insolubles, fijación de nitrógeno) (Angulo y col., 2014. Quin y col., 2016).
Ambos productos ensayados consiguen incrementos en la floración de entre 25,5-64% con diferencias estadísticas con el control bajo el mismo tipo de estrés (Figuras 1 y 3). Entender cómo los microorganismos contribuyen a la nutrición de las plantas y cómo las plantas dan forma a su microbioma, maximizando los beneficios nutricionales de esta interacción, forma parte de los objetivos planteados por TRICHODEX®️. Para ello, se han realizado estudios en campos con la aplicación de TRICHOBACTER® y BACNIFOS® en cultivos con un 30% menos de fertilización (fosfatada y nitrogenada, respectivamente) consiguiendo incrementos significativos de la producción, superando al control con el 100% de la fertilización.
 

 
TRICHOBACTER® aumenta los rendimientos en un 13% con una fertilización de nitrógeno al 100% y un 10% reduciendo dicha fertilización al 30%. Mientras, BACNIFOS® aumenta los rendimientos un 23% con una fertilización fosfatada al 100% y un 8% con la reducción de esta al 30% (Figura 2).
Los resultados obtenidos demuestran que una restauración adecuada del microbioma consigue no solo mitigar el estrés abiótico, debido a una salinidad excesiva y cambios ambientales muy bruscos, sino mejoras importantes en la eficiencia nutricional en los cultivos ensayados.
Los beneficios que aporta el buen manejo del microbioma vegetal conllevan no sólo sobrepasar el techo productivo de los cultivos, sino una importante mengua de los costes de producción.